6.5: Logistic Growth Model
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We have used the exponential growth equation y = y,e**

to represent population growth.

The exponential growth equation occurs when the rate of
growth is proportional to the amount present.

If we use P to represent the population, the differential

equation becomes:
i Z—T _ kP

The constant k is called the relative growth rate.
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The population growth model becomes: P = Pye*t

However, real-life populations do not increase forever. There
is some limiting factor such as food, living space or waste
disposal.

There is a maximum population, or carrying capacity, M.

A more realistic model is the logistic growth model where

growth rate is proportional to both the amount present (P) and

M-P
the fraction of the carrying capacity ( = ) that remains:



The equation then becomes:

d_P:kP(M—Pj
dt M

The equation is normally written this way:

Logistics Growth Model

P _Xpm-p)
d M

We can solve this differential equation to find the general form
of the solution curve.



Logistics Differential Equation
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Logistics Differential Equation
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Logistics Differential Equation
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Logistics Growth Model
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Solution Curve to
Logistic Growth Model
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A park can support no more than 200 deer. There are 30 deer in the
park now. Assume a logistic growth model and k = 0.15.

a. Find the logistic growth model.

el P(M - P)
dt M
dP .15

— =" P(200-P)
dt 200




A park can support no more than 200 deer. There are 30 deer in the
park now. Assume a logistic growth model and k=0.15. P, = 26

b. Find an equation for the population at time t.
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A park can support no more than 200 deer. There are 30 deer in the
park now. Assume a logistic growth model and k = 0.15.

c. Draw a slope field with the solution curve. m

d. For what value of P.is the population growing the fastest? 'Z;i
e. What is the limit of P as t approaches |nf|n|ty? lhm Mey= M =200

f. When is P increasing at an increasing rate? Decreasmg rate?
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Logistic Growth Model

4

Ten grizzly bears were introduced to a national park 10 years ago.
There are 23 bears in the park at the present time. The park can
support a maximum of 100 bears.

Assuming a logistic growth model, when will the bear population
reach 757
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Homework:

Section 6.5 — Logistic Growth FDWK




