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We have used the exponential growth equation 𝑦 = 𝑦0𝑒
𝑘𝑡

to represent population growth.

The exponential growth equation occurs when the rate of 
growth is proportional to the amount present.

If we use P to represent the population, the differential 
equation becomes: dP

kP
dt

=

The constant k is called the relative growth rate.

/dP dt
k

P
=

→



The population growth model becomes:  𝑃 = 𝑃0𝑒
𝑘𝑡

However, real-life populations do not increase forever.   There 
is some limiting factor such as food, living space or waste 
disposal.

There is a maximum population, or carrying capacity, M.

A more realistic model is the logistic growth model where 

growth rate is proportional to both the amount present (P) and 

the fraction of the carrying capacity 
𝑀−𝑃

𝑀
that remains:

→



The equation then becomes:

dP M P
kP

dt M

− 
=  

 

The equation is normally written this way:

Logistics Growth Model

( )
dP k

P M P
dt M

= −

→

We can solve this differential equation to find the general form 
of the solution curve.



Partial

Fractions

Logistics Differential Equation
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Logistics Differential Equation
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Logistics Differential Equation
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Solution Curve to 
Logistic Growth Model
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Logistics Growth Model
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A park can support no more than 200 deer.  There are 30 deer in the 
park now.  Assume a logistic growth model and k = 0.15.

a.  Find the logistic growth model.
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A park can support no more than 200 deer.  There are 30 deer in the 
park now.  Assume a logistic growth model and k = 0.15.

b.  Find an equation for the population at time t.
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A park can support no more than 200 deer.  There are 30 deer in the 
park now.  Assume a logistic growth model and k = 0.15.

c.   Draw a slope field with the solution curve.
d.   For what value of P is the population growing the fastest?
e. What is the limit of P as t approaches infinity?
f. When is P increasing at an increasing rate?  Decreasing rate?



Example:

Logistic Growth Model

Ten grizzly bears were introduced to a national park 10 years ago.  
There are 23 bears in the park at the present time.  The park can 
support a maximum of 100 bears.

Assuming a logistic growth model, when will the bear population 
reach 75?

→
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75 ??=P



Homework:

Section 6.5 – Logistic Growth FDWK


